| Geome | Geometry Regents Lomac 2015-2016 Date 10/29 due 10/30 Angles in Triangles 3.4R | | | | |--|--|-----------------|---------------|---| | Name
LO: | I can solve problems involving int reasoning. I can prove the triangle | | | triangles and explain my | | □ DO I | On the back of this packet | et | | | | transparen
cies, dry
erase
markers,
erasers
compass | Triangle sum and rotations Ro | tations preserv | /e | and | | | | H | В | M
C | | | ☐ (a) Highlight ∠A pink, ∠B blue | e, and ∠C yel | low | | | | and C'? | | | int M and label A'. Why don't we need to label B' | | | (c) Mark congruent angles with | | | | | | | | |
BA': | | | | | | | | | (g) Construct 180° rotation of | △ABC around | d point midpo | int H and label C". Why don't we need to label A" | | | (h) Mark congruent angles with | | | | | | (i) List the pairs of congruent a | angles: | | | | | (j) Name the angle relationship | between ∠B | CA and ∠CE | A': | | | \square (k) $\overline{AC} \parallel \overline{C"B}$ because $\angle BA$ | AC and ∠ABC | " are | | | (2) | Angles: Rotations and proving the sum of the interior angles of a triangle | | | | |-------------------------|---|--|--|--| | transparen
cies, dry | C' | | | | | erase
markers, | A' | | | | | erasers
compass | | | | | | | | | | | | | Ä | | | | | | | | | | | | (a) Mark the pink, blue, and yellow angles like you did in problem number 1. | | | | | | \square (b) In problem #1(d), you stated that \angle CBA' \cong \angle BCA. In problem #1(i), you stated that \angle ABC" \cong \angle BAC. | | | | | | \square (c) \angle C"BA' is a angle which means that m \angle CBA'+ m \angle ABC + m \angle ABC" = | | | | | | \square (d) If m \angle CBA' + m \angle ABC + m \angle ABC" = then we can substitute equal values into the equation | | | | | | REMEMBER ∠CBA'≅∠BCA | | | | | | + III∠ABC +∠ABC"≅ ∠BAC | | | | | | ☐ (e) ∠BAC, ∠ABC, ∠BCA are the three angles in the triangle. | | | | | | | | | | | | You have just proven the triangle sum theorem : <u>the sum of</u> | | | | | | | | | | | (4) | Angles: Rotations and angle measures | | | | | transparen
cies, dry | Exterior angles of triangles. | | | | | erase
markers, | $\hfill \square$ (a) The angles inside a triangle are called interior angles . The angles formed by the extension of a | | | | | erasers
compass | side of a triangle are called exterior angles . | | | | | | The interior angles in the diagram at right are,, and | | | | | | The exterior angles in the diagram at right are, and | | | | | | (b) Provide a reason for each step below. | | | | | | a + d = 180° | | | | | | d = 180° - a d a d d | | | | | | a + b + c = 180° | | | | | | b + c = 180° – a | | | | | | Because d = 180° – a | | | | | | and b + c = 180° - a | | | | | | d = by substitution | | | | | | The exterior angle theorem states that the measure of an exterior angle of a triangle is equal to the | | | | | | sum of the remote interior angles. (picture yourself at b and your friend at c sitting on the couch using | | | | | | a remote to control the television at d). | | | | | | | | | | | | (c) Write equations for the other two exterior angles . | | | | | | AND | | | | | | ☐ Isosceles triangles | |--|---| | | (a) Is there a way to fold isosceles triangle XYZ exactly in half? | | | (b) Draw a line where the crease would be. | | | (c) Complete each congruence statement $\overline{XY} \cong \underline{\hspace{1cm}} ZY \cong \underline{\hspace{1cm}} X$ | | | (d) ∠Y and ∠Z are called base angles . | | | Base angles of isosceles triangles are always | | | (e) ∠X is called the vertex angle . | | | Equilateral Triangles | | | (a) How many ways can equilateral triangle ABC be folded exactly in half? | | | (b) Complete the congruence statement ∠A ≅ ≅ | | | (c) Since all of the angles in an equilateral triangle are, X | | | each angle in an equilateral triangle always measures | | | $A \stackrel{\frown}{\longrightarrow} B$ | | (4) | Angles: Using Triangle Sum | | transparen
cies, dry
erase
markers,
erasers
compass | Use the triangle sum theorem and your angle notes sheet to name a relationships, write equations, and solve to find the values of the variables in each diagram. Mention parallel lines when needed. REMEMBER: Reasons can ONLY include relationships to angles that are already known. Add auxiliary lines if necessary. | | | □ (a) | | | b | | | | | | 93° / | | | 69° 58° | | | 36 | | | a | | | | | | because | | | | | | | | | | | | | | | | | 4) | Angles: Using Triangle Sum | | |-------------------------------------|----------------------------|--| | ry
aren
ry
rs,
s
ass | (b) C 95° 64° | | | | because | | | | | | | | (c) 68° | | | | because | | | | | 3.4 | |--|---|-----| | cont.
transparen
cies, dry
erase
markers,
erasers | Angles: Using Triangle Sum (d) 72 30° h 25° | | | | because | | | | (e) | | | | because | | | (4) | |-----------| | cont. | | transpare | | cies, dry | | erase | | markers, | | erasers | ## **Angles: Using Triangle Sum** en [] (f) | | because | |--|---------| be | cause | | | |----|-------|--|--| cont.
transpare
cies, dry
erase
markers, | |--| | erasers | | | | | ## **Angles: Using Triangle Sum** en [] (h) _____because_____ _____because_____ ## (5) Exit Ticket ON THE LAST PAGE [] (6) pen or pencil Homework Do all of #1-5 and 2 problems from #6-9 (1) Find the measure of angle ACD (2) Find the measure of angle BCF (3) Find the measure of angle BCA \square (4) Find the measure of x. \square (5) Find the measure of *b*. | (6) | Homework | |------------------|------------| | pen or
pencil | (6) | | because | | |---------|--|
because | |-------------| | | | | | | | | | | | | | | | | | (6) | |--------| | pen or | | pencil | Homework **(8)** | because | | |---------|--|
_because | | |--------------|--| Exit Ticket | Name | Date | Dor | 3.4R | |-------------|------|------|-----|------| | EXIL HICKEL | name | Date | Per | 3.4K | (1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following: Find the measure of angle a. Justify your work by showing equations and stating any angle relationships you use. DO NOW Name______ Date _____ Per____ 3.4R (1) In the diagram below, M is the midpoint of segment BC. Trace the triangle on a plastic sheet and rotate 180° around point M. Draw the rotation of the triangle on your paper. What do you notice about points B and C? (2) Describe why the cartoon below is supposed to make people smile. REALLY think about it.